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ABSTRACT 

By a cyclic layer of a finite Galois extension, E/K, of fields one means 
a cyclic extension, L/F, of fields where E D L D F _D K. Let C(E/K) 
denote the subgroup of the relative Brauer group, Br(E/K), generated by 
the various subgroups cor(Br(L/F)) as L/F ranges over all cyclic layers of 
ElK and where cor denotes the corestriction map into Br(E/K). We show 
that for K global, [Br(E/K) : C(E/K)] < oe and we produce examples 

where C(E/K) # Br(E/K). 

Let E be a finite Galois extension of a field K with Galois group G and  let 

B r ( E / K ) ,  the relative Brauer  group of E l K ,  denote the subgroup of the Brauer  

group, B r ( K ) ,  of K consist ing of those Brauer classes of finite d imensional  central  

simple K-a lgebras  which are split  by E.  If 6 is cyclic, the s t ructure  of B r ( E / K )  

is well unders tood;  one has B r ( E / K )  ~ K * / N ( E * )  where N denotes the no rm 

map  from E to K [P, Proposi t ion 15.1b]. For a rb i t ra ry  E / K ,  however, very 
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little is known about the structure of Br(E/K). Perhaps the most successful 

technique for obtaining results in the general case involves the corestriction map 

from cyclic layers of ElK. In this paper we are concerned with the question of 

whether "most" elements of Br(E/K) are obtained in this manner. 

By a cyclic layer of ElK we mean a Galois extension of fields L/F with 

cyclic Galois group where E 2 L ~ F _~ K. Let cor E. denote the corestriction 

homomorphism from Br(F)  to Br(K);  one verifies easily that corF(Br(L/F)) C_ 
Br(E/K). Let C(E/K) denote the subgroup of Br(E/K) generated by the various 

subgroups corF(Br(L/F)) taken over all cyclic layers L/F of ElK. Several 

results in the literature assert that,  under mild hypotheses on K, Br(E/K) is 

necessarily infinite if E ¢ K; these hypotheses include K finitely generated 

over a global field [FKS, Theorem 8] and K the function field of an absolutely 

irreducible variety over a field M where the transcendence degree of K over M 

is at least two [FS, Corollary 5]. These results are obtained by showing that  

C(E/K) is infinite. This raises the basic question with which we are concerned 

here: what is the relationship between Br(E/K) and C(E/K)? In this generality 

this question appears unapproachable with our present knowledge of relative 

Brauer groups. We focus here on the case when K is a global field where more 

detailed information about relative Brauer groups is available. For K global, 

we show that  C(E/K) contains all elements of Br(E/K) of prime order and that  

C(E/K) always has finite index in Br(E/K). We also show that if E is everywhere 

unramified over K and every Sylow subgroup of ~ either has prime exponent or 

is abelian, then Br(E/K) = C(E/K); in contrast, if E is everywhere unramified 

over K and 6 is the quaternion group of order 8, then Br(E/K) ~ C(E/K). 
Throughout this paper K will be a global field and E will be a fixed finite 

Galois extension of K with Galois group G. By a global field we mean either an 

algebraic number field or an algebraic function field of transcendence degree one 

over a finite field. Before establishing the notation we will be using, we briefly 

discuss the role that  ramification plays in the questions we are concerned with. 

It is not difficult to show (see Proposition 3 below) that C(E/K) has exponent 

equal to the exponent of ~. (By the exponent of a group we mean the least 

common multiple of the orders of its elements.) It is possible, however, for 

Br(E/g) to have larger exponent. As an illustration of this, C(Q(V~, vf3)/Q) has 

exponent 2 but  Br(Q(V~, x/3)/Q) contains elements of order 4 [S, Theorem 3.1]. 

Elements of Br(E/K) having order not dividing the exponent of G necessarily 
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have a non-zero Hasse invariant at a prime of K ramified in E. In particular, 

elements of Br(E/K) "unramified" in the sense that  they have non-zero Hasse 

invariant only at primes of K unramified in E have order dividing the exponent 

of ~ and so are candidates to be in C(E/K). For this reason, we focus attention 

on these "unramified" elements. If E is everywhere unramified over K, then all 

elements of Br(E/K) are "unramified" in the above sense. 

Let lr be a prime of K and let E _D L D K. We denote the completion of K 

at 7r by K~. If "~ is a prime of L extending 7r, we refer to [LT: K~] as the local 

degree of 7 over K.  We say that  7r is unramified in L if all extensions of 7r to L 

are unramified over K.  We define 7r to be u n d e c o m p o s e d  in L if 7r has a unique 

extension 6 to L which is unramified over K; if ~ is undecomposed in L and 6 

extends ~ to L, then 6 has local degree [L: K] over K. Suppose 7r is unramified in 

E and 6 is some extension of ~ to E. Then Gal(E~/h'~) is cyclic with canonical 

generator the Frobenius automorphism, say a, of 5. A different choice of 6 yields 

a conjugate of a as corresponding Frobenius automorphism and all conjugates of 

cr arise in this way. 

We will use freely the basic results of Albert, Brauer, Hasse, and Noether which 

classify the elements of Br(K)  by means of Hasse invariants; we refer the reader 

to [P, Chapter  18] for an exposition of this theory. We summarize below several 

of the main results of this theory that  we will frequently use. 

Let c~ G Br(h ' ) .  If  ~r is a prime of K,  we denote the Hasse invariant of c~ at w by 

inv , (a ) .  Then inv~(c~) E Q/Z  and we view inv~(c~) as a rational number in lowest 

terms in [0, 1). Let 7-/denote the subgroup of ~ ( Q / Z ) ~ ,  the direct sum of copies 

of Q /Z  indexed by the set of primes lr of K,  consisting of those elements (b~) such 

tha t  ~,~ b~ = 0 and such tha t  b~ e {0, 1/2} if 7r is real Archimedean and b~ = 0 

if lr is complex. The map INV: Br(K)  , 7-/ defined by INV(c~) = ( inv , (a ) )  

is an isomorphism between Br(K)  and 7-/ [P, Theorem 18.5]. The denominator 

of i nv , ( a )  is called the local  i n d e x  of c~ at 7r and denoted 1. i.~(a). The order 

of c~ in Br(K)  is denoted by exp(c~); exp(a)  is the least common multiple, taken 

over all primes of K,  of the local indices of c~ [P, Proposition 18.6 and Theorem 

18.6]. Let L be a finite separable extension of K.  Then L splits c~ if and only if 

for all primes 7r of K,  1. i.~(ct) divides [L~: K~] for all extensions 6 of ~r to L [P, 

Corollary 18.4b]. If L splits c~, then exp(c~) divides [L: K] [P, Proposition 14.4@ 

p will always denote a prime. We denote the p-primary component of Br(L/K) 
by Br(L/K)~. Br(L/K) is the direct sum of its subgroups Br(L/K)p as p ranges 
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over the finitely many primes dividing [L: K]. 

Let /3 E Br(L). In what follows, we will make frequent use of the following 

important  formula for the Hasse invariants of corL(/3) E Br(K);  for a proof of 

this result, see [CF, page 187]. 

LEMMA 0: Let L be a finite separable extension of K, let fl E Br(L), let 7r be a 

prime of K, and let 1rl , . . .  ,Trt be the primes of L extending lr. Then 

t 

inv  (cor,  (Z)) = inv. ,  (Z) 
i = 1  

I t  will be convenient to have a notation for the "unramified" elements of 

Br(E/K).  

Definition: Br(E/K)un is the subgroup of Br(E/K) consisting of those a E 

Br(E/K)  such tha t  if inv=(a) # 0, then 7r is unramified in E.  

We begin our discussion by singling out particularly convenient sets of gener- 

ators for Br(E/K)  and Br(E/K)un. 

Definition: An element a E Br(K)  is bas ic  if it has non-zero Hasse invariant at 

precisely two primes of K.  

We note that  if a E Br(K)  is basic and ~rl and 7r2 are the primes of K at which 

a has non-zero Hasse invariant, then inv~ 1 (a) = - inv~ 2 (a). Also, if 71" 1 and 7r2 

are distinct primes of K and n is a possible value for the local index at 7rl and 

r2 of an element of Br(K) ,  then there exists a basic element of order n having 

non-zero Hasse invariants precisely at r l  and 7r2. Both assertions are immediate  

consequences of the Hasse-Brauer-Noether-Albert Theorem [P, Theorem 18.5]. 

LEMMA 1: Let /3 E Br(E/K)  (respectively, Br(E/K)un) have order m. Then 

j3 can be expressed as a sum ~ j  a j  of  basic elements of Br(E/K)  (respectively, 

Br(E/K)un) of prime power order dividing m. 

Proof'. We give the proof for Br(E/K); the argument for Br(E/K)un is identical. 

We may clearly assume that  exp(~) = pr where p is prime. We proceed by 

induction on the number n of primes ~r of K with inv~ (~) ¢ 0. Then n >_ 2 and 

if n = 2, then ~ is already a basic element of the same order. Assume inductively 

that  the result is true for elements of Br(E/K)  with non-zero Hasse invariants at 

less than n primes of K and suppose n > 2. There exists a prime ~rl of K with 

1. i.~1 (/3) = pr. Since the sum of the Hasse invariants of ~ equals 0, there must 
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be at least two such primes, say ~rl and ~r2. Let a E Br(K)  be the basic element 

such that  inv~ 1 (a) = - i n v , ,  (/3) and inv~ 2 (a) = inv~ 1 (~). Since/3 • Br(E/K),  

all extensions of ~i in E have local degree divisible by p~ for i = 1, 2. It  follows 

that  E also splits a and so a is a basic element of Br(E/K)  of order p~. Let 

7 = / 3 + a  • Br(E/K).  Then inv~ l (7 )  = i n v ~ ( ~ ) + i n v ~  l (a )  = 0 and so 7 

has non-zero Hasse invariants at less than n primes of K.  By our inductive 

hypothesis, 7 is a sum of basic elements of Br(E/K),  each of order dividing p~. 

But then ~ = (p~ - 1)a + 7 is a sum of basic elements of Br(E/K) of order 

dividing p~, completing the induction. | 

As an application of Lemma 1, we show that  B r ( E / K ) , n  has finite index in 

B r ( E / K ) .  

PROPOSITION 2: [Br (E/K) :  B r ( E / K ) , n ]  < cx~. 

Proof." I t  is clearly enough to prove that  for each prime p, (Br(E/K)u,)p has 

finite index in Br(E/K)p. Let p be prime and let ~ = { r l , . . .  , ~rt} denote the 

set of primes of K ramified in E. Let 7~1 denote the set of basic elements of 

Br(E/K)p having non-zero Hasse invariant only at primes in ~.  T~I is finite 

since ~ is finite and the order of any element of TQ divides [E: K]. For each 

u with p~ dividing [E: K] and each i with 1 < i < t, choose, if such exists, a 

basic element of Br(E/K)p not in T~I which has order pU and non-zero Hasse 

invariant at 7ri. Let T~2 be the (finite) set of basic elements chosen. By Lemma 1, 

it suffices to prove that  for each basic element fl of Br(E/K)p, ~+ (Br(E/K)un)p 

is in the subgroup of Br(E/K)p/(Br(E/K)un)p generated by the finitely many 

cosets a + (Br(E/K)u.)p for a • T~I U 7~2. 

Suppose ~ is a basic element of B r ( E / K ) p  and suppose that  ~ and ~ are the 

primes of K at which ~ has non-zero Hasse invariant. If  r and ~ are both  in 

:P, then/3 • T/l; if 7r and ~ are both  unramified in E,  then/3 • (Br(E/K)un)p. 

Assume then that  ~r • ~ and $ is unramified in E. Let inv~(fl) = a/p ~. Since 

@ T~I, by our choice of 7~2 there exists a basic element a • 7~2 with inv~ (a) = 

b/p ~ for some b. Let 3, be the other prime of K at which a has non-zero Hasse 

invariant. Since a • T~2, 7 is unramified in E. Since (a,p) = (b,p) = 1, there 

exists c with bc - a (mod p ' ) .  But then inv~(~ - ca) -- 0. It  follows that  ~ - ca  

can have non-zero Hasse invariant only at ~ and "y and so ~ - c a  • (Br(E/K)un)p. 

Thus Z + (Br(E/K)u~)p = ca + (Br(E/K)un)p. | 

For the convenience of the reader, we isolate two definitions made earlier. 
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Definition: 
(1) A cyclic layer  L/F of E/K is a Galois extension of fields L/F with cyclic 

Galois group with E _D L D F D K. 

(2) C(E/K) is defined to be the subgroup of Br(K) generated by the various 

subgroups cor~(Br(L/Y)) taken over all cyclic layers of E/K. 

We next justify several assertions made in the introduction. 

PROPOSITION 3: 

(1) Let f / Y  be a cyclic layer o~ E /K .  Then cor~(Br(L/Y)) C_ Br(E/K). 
(2) The exponent of g(E/K) equals the exponent of G. 
(3) The exponent of Br(E/K)un equals the exponent ofF. 

Proof: (1) Let /3 E Br(L/F). Then /3 is split by L so /3 is split by E. Thus 

/3 E Br(E/F) ~ H ~ ( ~ , E  *) where ~ = Gal(E/Y). corr,: Br(E/F) 
Br(K) corresponds to the cohomological corestriction map cor~ : H2(~,  E*) 

H2(~, E*) ---- Br(E/K). It follows that corf~(Br(f/Y)) C_ Br(E/K). 
(2) Suppose first that L/F is a cyclic layer of E/K and/3 E Br(L/F). Let 

generate Gal(L/F) and let f be some extension of a to E. Then T E Gal(E/F) C_ 
g. If T has order m, then ~'~ is the identity automorphism of L and so the order of 

a, [L: F], divides m. In particular, [L: F] divides the exponent of ~. Since cor~ 

is a homomorphism, exp(corg(/3)) divides exp(/3). Since exp(/3) divides [L: F], 

exp(cor~(/3)) divides the exponent of 6 and so the exponent of C(E/K) divides 

the exponent of g. Conversely, suppose p is a prime and p~ divides the exponent 

of ~. We must produce an element of C(E/K) of order p~. By assumption, there 

exists a E g of order p~. By the Tchebotarev Density Theorem [J, Theorem 10.4], 

there exist infinitely many primes of E having a as Frobenius automorphism. Let 

~1 and 7r2 be distinct primes of K unramified in E and having extensions ~1 and 

(~2 to E with (r as Frobenius automorphism. Let F = E ° and let ~1 and ~2 

be, respectively, the restrictions of 51 and ~2 to F. Then ~/~ has local degree 

1 over K and is undecomposed in E. Thus [E~: F~] = p~ for i = 1, 2. Let 

/3 E Br(F) be a basic element having local index p~ at ~1 and "~2. Then E splits 

/3 so/3 E Br(E/F). Since E/F is a cyclic layer of E/K, corYK(/3) is an element 

of g(E/h'); g(E/K) has order p~ by Lemma 0. 

(3) Since only finitely many primes of K ramify in E, the element fl constructed 

in the proof of (2) can be chosen so that cor~(/3) E Br(E/K)un. It follows that 

the exponent of G divides the exponent of Br(E/K)~. Conversely, suppose p is 
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a prime and a E B r ( E / K ) , .  has order pt. We must  show tha t  G contains an 

element of order pt. Let ~r be a prime of K at which c~ has local index pt and let 

be an extension of 7r to E. Since a E Br(E/K)un, ~r is unramified in E.  Let a 

be the Probenius au tomorph ism of 6, let F = E °, and let ~, denote the restriction 

of 6 to F .  Then  7 has local degree 1 over K and is undecomposed in E.  Since 

E splits c~, pt divides [E~: Fv]. Since Gal(E~/Fn) C_ G is cyclic, it contains an 

element of order pt. Thus G contains an element of order pt. | 

Our next result gives a sufficient condition for basic elements of Br(E/K) ,n  to 

be elements of C(E/K).  

PROPOSITION 4: Let ct be a basic element of Br(E/K)un and let 7rl and 1r2 

be the two primes of K where a has non-zero Hasse invariant. Let cri be the 

Frobenius automorphism of some extension of Tri to E for i = 1, 2. Ira1 and a2 

are conjugate in ~, then ~ E C(E/K).  

Proof: Assume tha t  a l  and a2 are conjugate in G. Since every conjugate of a2 

is the Frobenius au tomorph ism of some extension of 7r2 to E,  we may  assume 

tha t  cq = c~2. Let a = (rl = o2 and let ~ be an extension of 7r~ to E having 

a as Frobenius au tomorphism for i = 1, 2. Let F = E (°) and let 7i denote the 

restriction of ~ to F for i = 1, 2. Then  Fvl = K , i  and ~'i is undecomposed in E 

for i -- 1, 2. Let /3 E Br (F)  be the basic element such tha t  invv, (~) = inv~ (a)  

for i = 1, 2. Since E splits c~, the local degree over K of every extension to E of 

7rl and 7r2 is divisible by exp(a) .  It  follows tha t  every extension to E of 71 and 

72 has local degree over F divisible by exp(/3) = exp(c@ Thus E splits ~ and so 

/~ e Br(E/F) .  By definition of Z and Lemma 0, a = corFK(Z). Since E l F  is a 

cyclic layer of E l K ,  a C C(E/K).  | 

We are now able to prove our first main result. 

THEOREM 5: Let E be a finite Galois extension of the global field K. Then 

C(E/K)  is a subgroup of Br(E/K)  of finite index. 

Proof'. Suppose for every prime p tha t  (Br(E/K)un/(C(E/K) N Br(E/K),n))p 

is finitely generated.  Since the order of any element of Br(E/K)  divides [E: K],  

it follows tha t  C(E/K) N Br(E/K)un has finite index in Br(E/g) ,n .  By L e m m a  
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2, Br(E/K)/Br(E/K).n  is a finite group. It follows that  

I Br(E/K)/C(E/K)I 
=[ Br(E/K)/C(E/K) Br(E/K), ,  I • [C(E/K) Br(E/K)un/C(E/K)[ 

<-I Br(E/K)/Br(E/K)un]" I Br(E/K)~,/(C(E/K) n Br(E/K)un)[ < 00. 

It remains to show that  there exists a finite set of generators for the p-primary 

component of  Br(E/K)un/(C(E/K) nBr(E/K)~n). Let P be a Sylow p-subgroup 

of G = Gal(E/K). For each (al, a2) E P × P,  choose a fixed ordered pair 

(Trl, Ir2) of primes of K unramified in E with 7rl 5£ 7r2 such that,  for i = 1, 2, 

a~ is the Frobenius automorphism of some extension to E of ~r~; the existence 

of ~rl and Ir2 is a consequence of the Tchebotarev Density Theorem [J, Theorem 

10.4]. We denote .(71"1, 7r2) by 7r(al,a2). For each (O'1,O'2) E • × ~O, let pr = 

min{I (al)I ,  ](a2)I} and let a ( a l , a2 )  be the basic element of Br(K)  such that  

inv.,  (a (a l ,  a2)) = ( - 1 ) i / p  r for i = 1, 2. Since ai is the Frobenius automorphism 

of some extension 5i to E of 7h, 5i has local degree I(a~>] over K. Since E 

is Galois over K,  every extension of ~rl to E has local degree divisible by p~. 

It follows that  a ( a l ,  a2) is a basic element of Br(E/K)un of order p~. We will 

show that  the cosets a (a l ,  a2) + (C(E/K) N Br(E/K)~n) for (al,  a2) E P × P 

generate the p-primary component of Br(E/K)un/(C(E/K) n Br(E/K)un). By 

Lemma 1, it suffices to show that  if 3 is a basic element of p-power order in 

Br(E/K)un, then 3 - ca(a1, a2) • C(E/K) N Br(E/K)~n for some integer c and 

some (o'1, (72) • ~:) × P.  

Let 3 • Br(E/K), .  be a basic element of order pt and let 01 and 02 be the 

primes of K at which 3 has non-zero Hasse invariant. Let inv01 (3) = b/P t 
where (b,p) = 1. Then inve2(3) = -b/p t. Since the Sylow subgroups of G 

are conjugate, each 0i has an extension to E whose Frobenius automorphism 

al is in P.  Let (~rl, ~r2) = lr(al, a2) and let a = a(al, 62). Then exp(a) = p~ 

where p~ = min{[ (al)[ ,  [(a2)[}. Moreover, the local degree over K of each 

extension to E of 0~ divides p~. Since E splits 3, r _> t. We will show that  

3 + bp~-ta(al, cr2) • C(E/K) (3 Sr(E/K)un. 
By definition, inv~l(a ) = -1/p ~ and inv~2(a ) = 1/pL We define ai • Br(K)  

for i = 1, 2 as follows. If 0i = Iri, we set ai = 0. If 0i 5£ ~ri, we define ai to be 

the basic element of Br(K)  such that  invo, (a~) = (-1)i+lb/p t and inv,,  (hi) = 

(-1)ib/p t. Then 3 + bP r-ta and a l  + a2 have the same Hasse invariants and 

so 3 + bp~-ta(al, a2) = a t  + a2. Since E splits both 3 and a, every prime 
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of E extending one of 01, 02, ~rl, or ~r2 has local degree over K divisible by 

pt. Thus each al • Br(E/K)un. By Proposition 4, each ai • C(E/K)  and so 

/3 + bpr-ta(al, a2) = al + a2 • C(E/K)  A Br(E/K)un. | 

We next turn to the question of which elements of Br(E /K)  are in C(E/K)  

and begin with an easy reduction result. 

LEMMA 6: Suppose E D M D K and a is a basic element of Br(E/K) .  Assume 

that there exists/3 • C(E/M) with corM(/3) = a. Then a • C(E/K) .  

Proofi. By assumption, there exist cyclic layers L1/F1,. . .  , Lt/Ft of E / M  and 

--= ~- corM (/3j). But elements /3j of Br(Lj /Fj)  for j 1, , t such that /3 • . .  E _-I F j  

then 
t t 

a corM (/3) ~ c o r  M Fi Vj C(E/K)  _- = corM(/3j) = ~ c o r  K (/3j) • 
j = l  j = l  

since Lj/Fj is also a cyclic layer of E/K .  | 

We next reduce to the case when G is a p-group. 

PROPOSITION 7: Let P be a Sylow p-subgroup of ~ and let M = E p. 

(1) I f B r ( E / M )  = C(E/M),  then Br(E/K)p = C(E/K)p. 

(2) I fBr(E/M)un C_ C(E/M),  then (Sr(E/K)un)p C_ C(E/K)p. 

(3) If  every element of order p in Br(E/M)  is in C(E/M),  then every element 

of order p in Br (E /K)  is in C(E/K).  

Proof: We only prove (1); (2) and (3) are proved by a similar argument. Assume 

that Br(E/M)  = C(E/M).  By Lemma 1, it is sufficient to prove that all basic 

elements of Br(E/K)B lie in C(E/K).  Let a be a basic element in Sr (E /K)p  and 

let ~rl and 7r2 be the primes of K at which a has non-zero Hasse invariant. Fix i 

with 1 < i < 2. The sum of the local degrees over K of the various extensions of 

~rl to M equals [E: M] IT ,  Theorem 2-4-6]. Since [E: M] = [P[, (p, [M: g ] )  = 1. 

It follows that  there exists a prime 7i of M baving local degree over K which 

is prime to p. Let 5i denote an extension of 7i to E. Since E splits a, exp(a) 

divides [E~,: g~,] = [E~,: M.y,][M.y,: K~,] and so exp(a) divides [E~,: M.~,] for 

i = 1, 2. Let /3  • Sr (M)  be the basic element such that inv,, (/3) = inv,, (a) for 

i = 1, 2. Then E splits/3 so/3 • C(E/M) by hypothesis. Since corM(/3) = a by 

Lemma O, a • C(E /K)  by Lemma 6. | 
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We will see later tha t  there exist examples where, with context as in Proposi t ion  

7, Br(E/K)p = C(E/K)p but  Br(E/M)p # C(E/M)p. We next consider a special 

case when G is a 2-generator abelian p-group. 

LEMMA 8: Assume that G = (~h) x (a2) where I (~> I --  p r  for i -- 1, 2. Let a be 

a basic element of Br(E/K)  of order p~ and let 7cl and ~r2 be the primes of K at 

which a has non-zero Hasse invariant. Let 61 and 52 be primes of E extending 

7rl and 7r2, respectively. Assume that one of the following holds: 

(1) Gal(E~, /K, , )= <ai) fori = 1,2; 

(2) Gal(E, , /K, , )  = <al> × <a2> for i - -  1,2; 

(3) Gal(E~I/K,1)= <al) × (a2) and Gal(E~:/K~2) = <a2>; 

(4 )  = × a n d  Gal(E l/K.1) = 

Then a C C(E/K).  

Proof: If  (2) holds, then 7ri is undecomposed in E °~ for i = 1, 2. Since 

[E°I :  K] -- pr, it follows tha t  E °~ splits a.  Since E ~ / K  is a cyclic layer of 

E / K  and a E Br(E°I/K),  a E C(E/K).  Thus we may assume tha t  either (1), 

(3), or (4) holds. Let T = E °~°2. T / K  is a cyclic layer of E / K  and so it suffices 

to prove tha t  T splits a.  This is equivalent to showing tha t  ~rl is undecomposed 

in T for i = 1, 2. Let Zi denote the decomposit ion field of ~ri in T for i = 1, 2. 

We must  show tha t  Z1 = Z2 = K.  

Suppose (1) or (3) holds. Since Gal(E~2/K,2) = (a2), ~r2 splits completely 

in E ~2 but  not in any proper  extension of E ~ inside of E.  Since 7r2 also splits 

completely in Z2, 7r2 splits completely in Z2E °~ . I t  follows tha t  Z2 C E ~ .  But  

Z 2 ~__ T and so Z2 C_ T A E  °2. Since G = (a la2 ,a2) ,  T N E  ~2 = K and so Z2 = K 

as was to be shown. If  (1) holds, a similar argument  shows tha t  Z1 = K also. 

If  (3) holds, then r l  is undecomposed in E and so r l  is undecomposed in T. In 

particular,  Z1 -- K .  The case when (4) holds follows by symmetry .  | 

We are finally in a position to prove that  elements of Br(E/K)  of prime order 

lie in C(E/K).  

THEOREM 9: Let E be a tlnite Galois extension of the global field K. Then 

C( E / K) contains all elements of Br( E / K) of prime order. 

Proo~ By Proposi t ion 7(3), we may assume tha t  G = Gal(E/K) is a p-group for 

some prime p. If  G is cyclic, then E / K  is a cyclic layer of E / K  so a e C(E/K).  

Thus we may  assume tha t  G is not  cyclic. By Lemma 1, it suffices to prove tha t  



Vol. 96, 1 9 9 6  CORESTRICTIONS OF CYCLIC ALGEBRAS 253 

basic elements of order p in Br(E/K) are in C(E/K). Let a be a basic element of 

order p in Br(E/K) and let 7rl and 7r2 be the primes o f / (  at which a has non-zero 

Hasse invariant. Let ~i be an extension to E of 7r~ for i = 1, 2. Since E splits a,  

p divides [Gal(E~/K~)[ for i = 1,2. Let ai be an element of Gal(E~/K~) of 

order p for i = 1, 2. We show next tha t  we may assume tha t  ~ = (al ,  o2). 

Let 7- /= (01, a2), let N = E ~t, and let 7~ denote the restriction of (~i to N for 

i = 1, 2. Let /3 c Br (N)  be the basic element of order p such tha t  invT, (/3) = 

i n v ~ ( a ) .  Then  corN(/3) = a.  We claim tha t  /3 E Br(E/N). Let Ni = E ° '  and 

let A~ denote the restriction of 5i to N~ for i = 1, 2. Then  [Es,: (Ni)~,] - - p  and 

so p divides [E,, :  N~]  for i = 1, 2. Since E is a Galois extension of N,  p divides 

the local degree over N of every extension of 7i to E. It  follows tha t  E splits 

/3. By Lemma 6, if/3 E C(E/N), then a C C(E/K). Thus, replacing a by/3,  we 

may assume tha t  G = (01, o2). 

Let O(G) denote the Fratt ini  subgroup of 6 and let M be the fixed field of ~ (~) .  

Since G is a non-cyclic two generator p-group, M is a Galois extension of K with 

Galois group elementary abelian of order p2. Let v~ = 0 ~ ( 6 )  C Gal(M/K) so 

Gal(M/K) = (71> × @2>- Since GaI(M/K) is not  cyclic, 0i ¢ O(G) for i = 1, 2. In  

particular,  for i = 1, 2, Iri does not split completely in M and so every extension 

of 7ri to  M has local degree over K divisible by p. It  ibllows tha t  a C Br(M/K). 
Since cyclic layers of M/K are also cyclic layers of E/K, we may assume tha t  

E = M .  
We are now reduced to the following situation: Gal(E/K) = (al)  × (a2} where 

a l  and 02 each have order p and o~ E Gal(E,~/K~) for i = 1,2. Since oi has 

order p for i = 1,2, one of the cases (1)-(4) of Lemma 8 must  hold and so 

• C(E/K) .  . 

We turn  next to the question of which elements of Br(E/K)~ are in C(E/K). 
We begin by considering the case when G is an abelian p-group. 

LEMMA 10: Assume that ~ is an abelian p-group. Then Br(E/K),, C__ C(E/K). 

Proof." By L e m m a  1, it suffices to prove tha t  each basic element in Br(E/K)~ 
is in C(E/K). Let a be a basic element of order p~ in Br(E/K)~ and let ~r~ 

and ~r2 be the primes of K at which a has non-zero Hasse invariant. Since a • 

Br(E/K)un, 7rl and 7r2 are unramified in E.  Let 5~ be an extension to E of ~r~ for 

i = 1, 2. Gal(E~,/K~,) is cyclic and, since E splits a ,  p~ divides I Gal(E~,/K,~,) I 
for i = 1,2. Let 0~ be an element of Gal(E~,/K,~,) of order p~ for i = 1,2. 
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Arguing exactly as in the proof  of Theorem 9, we may  assume tha t  G = (hi,  a2). 

Since 6 has exponent  pr, Gal(E~/K~,) is cyclic, and ai E Gal(E~,/K~,), it 

follows tha t  Gal(E~,/K~,) = (a~) for i = 1, 2. By Lemma 8, we may  assume tha t  

G ¢ (0.1) X (0"2) and so [G[ < p2r. 

Since 0.1 has maximal  order in ~, there exists 0.3 E G such tha t  6 = (0.1) x (0.3}- 

Assume tha t  [ (0.3} [ = pW. Then  [G[ = p~+W < p2~ so w < r. Since G/(0.1> is 

generated by 0.2 (0.1), w is the minimal t such tha t  0.~ C (0.1)- Replacing 0.1 and 
p~ p~ 

0.3 by appropr ia te  powers, if necessary, we may  suppose tha t  or2 = 0.1 °"3 for 

some u, v with 0 < u < r and 0 < v < w. We claim tha t  u = v = 0. Suppose first 
pW-1 pU+W-1 pV+W-1 pU+W-1 ~ts v-1 pU+W-1 

t ha t  v _> 1. T h e n a  2 = a l  a3 =0 .1  (a3 p )P = 0.1 E 

(0.1), contradict ing p~ = [G/ (h i ) [ .  Thus v = 0. Now suppose u > 1. Then  
pr--I ptt+r--1 pr--1 r u-- ~-- pr--1 pr--1 

0.2 = 0.1 0.3 = ( o . p ) p  10.p 1 : 0"3 • Since w < r - 1, 0.3 = 16  
p r - 1  

and so 0" 2 = 19, contradict ing our choice of 0.2 as having order p~. Thus  

0.2 = O"10.3. 

Let L = E ~3 . Since L / K  is a cyclic layer of  E l K ,  it suffices to  show t h a t  L 

splits a.  Fix i with 1 < i < 2. Since (0.~) C_ Gal(E~,/K~) C Gal(E/K) = (al, a2) 

and since Gal(E~,/K,,) is cyclic, it follows tha t  (0.i) = Gal(Ez,/K~,). Let Z~ 

denote the decomposi t ion field of 7ri in L. Since 6 is abelian, ~h splits completely  

in bo th  Zi and E °~ and so also in ZIE °~. But every extension of ~r~ to E °~ is 

undecomposed  in E and so Zi C E ~''. Since (0.3,0.1) = (0.3,0.2), L N E ° '  = K.  

Since Zi C_ L, it follows tha t  Zi -- K .  But  then 7ri is undecomposed in L and so 

7h has a unique extension 7~ to L. Since [L~:  K~,] = [L: K] = p~, L splits a .  

| 

THEOREM 11: Let  E be a finite Galois extension of  the global field K. Let  p be 

a pr ime and suppose that each Sylow p-subgroup of Gal(E/K) is either abelian 

or of exponent p. Then Br(E/K) ,n  C_ C(E/K).  

Proof'. By Proposi t ion  7 and Lemma 10, we may  assume tha t  Gal(E/K) is a p- 

group of exponent  p. By Proposi t ion  3(3), Br(E/K)un has exponent  p. Theorem 

11 now follows from Theorem 9. | 

As noted previously, there exist examples where ~ is an abelian p-group and 

Br(E/K)  # C(E/K).  Such examples can not,  however, exist if E is everywhere 

unramified over K.  As an immediate  corollary of Theorem 11, we have: 

COROLLARY 12: Let E be a finite Galois everywhere unramified extension of the 

global field K. Assume that each Sylow subgroup of Gal( E / K) is either abelian 
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or of prime exponent. Then Br(E/K) = C(E/K). 

Given any finite group 7-/, by the theorem of Scholz-FrShlich-Uchida [Sc, Satz 6] 

(or IF]), there exist algebraic number fields E _D K with E Galois and everywhere 

unramified over K and with Gal(E/K) ~- 7-l. Assume then that  G is isomorphic 

to the quaternion group of order 8 and that E is everywhere unramified over K. 

We will prove that  Br(E /K)  ¢ C(E/K),  showing that some restriction on the 

structure of the Sylow subgroups of Gal(E/K) is necessary in Corollary 12. We 

begin with a technical lemma. 

LEMMA 13: Assume that G is isomorphic to the quaternion group of order 8 

and that E is an everywhere unramified extension of K. Let a 6 G have order 

4. For a 6 Br(E/K) ,  let S(a)  denote the set of primes 7r of K such that 

both l.i .~(a) = 4 and ~r has some extension to E which has a as Frobenius 

automorphism. I ra  E Br (E/K)  with IS(a)[ odd, then [S(a + corF(/3))[ is also 

odd for every cyclic layer L / F  of E / K  and every basic element 3 6 Br(L/F) .  

Proof: Let a 6 Br(E /K)  with [S(a)[ odd, let L / F  be a cyclic layer of E / K ,  

let /3 6 Br(L/F)  be a basic element, and let 7 = corF(~3). Let 01 and 42 be 

the primes of F at which/3 has non-zero Hasse invariant and let 0k denote the 

restriction of 0~ to K for i = 1, 2. If 01 = 02, then 7 = 0 since inv,1(3) = 

- inv,2  (/~). Thus we may assume that 01 ~ 02. Then inv0. (7) = inv,, (/3) for 

i = 1, 2, and 1. i.01 (7) ---- l. i-02 (7)" Let 7r be a prime of K. Since E is everywhere 

unramified over K, 1. i.=(~) _< 4 and 1. i.~(V) _< 4 by Proposition 3(3). Thus 

inv=(a),inv=(7) e {0 ,1 /2 ,1 /4 ,3 /4} ,  inv~(a + 7 ) =  i n v , ( a ) i fT r  ~ {01,02}, and 

i n v , ( a + 7 )  = inv=(a)+inv~(7)ifTr C {81, 02}. In particular, ifl. i.e~ (7) < 4, then 

S(a)  = S(a  + 7) and so we may assume that 1. i.0~ (7) = 4 for i = 1, 2. It follows 

that  exp(j3) = 4 and so L / F  is a cyclic layer of E / K  of degree divisible by 4. 

Since Q is isomorphic to the quaternion group of order 8, Q has no homomorphic 

images which are cyclic of order 4 and so L = E and [E: F] = 4. If neither 01 

nor 02 has an extension to E having a as Frobenius automorphism, then clearly 

S(a) = S(a  + 7) and so we may assume that 01 has an extension to E having 

a as Frobenius automorphism. We will show that  this forces 82 to also have an 

extension to E having a as Frobenius automorphism. 

Since E splits 3, 0~ is undecomposed in E for i = 1, 2. In particular, since 

is the Frobenius automorphism for some extension of 01 to E, (a) C_ Gal(E/F).  

It follows that  Gal(E/F) = (a). Let 7- be the Frobenius automorphism of some 
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extension 5 of 02 to E.  Then  T also has order 4. Suppose tha t  T is not conjugate  

to a.  Since a and a 3 a r e  conjugate in G, ~- is also not conjugate  to a 3. Thus  

T is not conjugate  to any element of (a) and so left mult ipl icat ion by T acts  

as a t ranspos i t ion  on the cosets of (c~) in 6. By [J, Proposi t ion 2.8, page 101], 

02 is undecomposed  in F.  Since 02 is undecomposed in E,  it follows tha t  02 

is undecomposed  in E and so [E~: Ko2] = 8 = [6[. Thus Gal(E~/Ko2) = 6. 

But  Gal(E6/Ko2) is cyclic since E is everywhere unramified over K and so 6 is 

cyclic, a contradict ion.  This shows tha t  02 also has an extension to E having 

as Frobenius  au tomorphism.  

Let  7r be a pr ime of K having an extension to E having a as Frobenius au- 

t o m o r p h i s m  so ~r • 8 ( a  + 7) if and only if 1. i .~(a + 7) = 4. I f  7r ~ {01,02}, 

then  inv~(a  + 7) = i n v , ( a )  and so ~r • S(a + 7) if and only if 1. i .~(a)  = 4. 

If  7r • {01,02}, then  inv~(a  + 3') = i n v , ( a )  + inv,(3 ')  and so ~r • S(a + 3") 

if and only if 1. i .~(a)  _< 2. A routine verification shows tha t  [S(a + 7)[ • 

{[S(a)l  - 2, [S(a)l ,  IS(a)[ + 2} and so is odd. I 

PROPOSITION 14: Let E be a finite Galois everywhere unramified extension of 

the global field K. Assume that Gal( E / K ) is isomorphic to the quaternion group 

of order 8. Then Br(E/K) ¢ C(E/K). 

Proo~ Let  G = Gal(E/K) = (al,c~2). Then  a l  and ~2 have order 4 and 

are not conjugate  in 6. Fix  i with 1 < i < 2. By the Tchebo ta rev  Densi ty  

Theo rem [J, Theo rem 10.4] there exists a pr ime ~i of E having ai as Frobenius  

au tomorph i sm.  Let  7ri denote  the restriction of ~i to K.  Let a • B r ( K )  be  the 

basic e lement  of B r ( K )  of order 4 having non-zero Hasse invariants at  7rl and 

7r2. Then  a • Br(E/K) since every extension of ~ri to E has local degree 4 for 

i = 1, 2. Suppose tha t  a • C(E/K). Then  there exists a set L1/F1,. . . ,  Lr/F~ 

of cyclic layers of E / K  and ~i • Br(Li/Fi) such tha t  a = y~i~__l co r~  (~i). By 

L e m m a  1, we may  assume tha t  each ~i is basic. Let 3 ' i  = - - c o r ~ ( ~ i ) .  Then  
r j 

+ ~ i = 1 3 ' i = 0 "  S e t a 0 = a a n d a j = a + ~ i = 1 3 ' i f o r  l _ < j _ < r .  L e t a = a l  

and let S ( a j )  denote  the set of pr imes ~r of K such tha t  bo th  1. i .~(~j) = 4 and 

has some extension to E which has a as Probenius au tomorphism.  By definition 

of a ,  S ( ao )  = {a l}  since a2 is not conjugate to a l .  Proceeding by induct ion on 

j ,  it follows f rom L e m m a  13 tha t  [S(aj)l is odd for 0 _< j _< r. In par t icular ,  
?- 

(~  ¢ 0, contradic t ing a + ~ i = 1  3'i = 0. l 

We r emark  tha t  a similar result  holds if Gal(E/K) is isomorphic to the wrea th  
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product of the cyclic group of order 3 with itself. The proof is similar to that 

of Proposition 14. We conclude with the promised example showing that the 

converses of the assertions in Proposition 7, (1) and (2), do not, in general, hold. 

PROPOSITION 15: Let H = (a, T) be the quaternion group of order 8 and let 

be the semi-direct product of H with the cyclic group of order 3 generated 

by 7 where 7 permutes a, % and aT transitively. Let E be a finite Galois 

everywhere unramified extension of the global field K and assume that Gal( E / K ) 

is isomorphic to ~. Let M = E ~. Then Br(E/ I ( )2  = C(E/K)2  but Br (E /M)2  

C(E/M)2. 

Proof: Br (E /M)2  ¢ C(E/M)2  by Proposition 14. Let a be a basic element of 

B r ( E / K ) 2  and let 7rl and rr2 be the primes of K where c~ has non-zero Hasse 

invariant. By Proposition 3(3), exp(a) divides the exponent of 6 so exp(c~) =- 2 

or 4. If exp(~) = 2, then ct C C(E/K)2  by Theorem 9 so we may assume that 

exp(a) = 4. Let 31 and 62 be, respectively, extensions of 7rl and zr2, respectively, 

to E. Since E / I (  is everywhere unramified, Gal(E6,/K~,) is a cyclic subgroup of 

G for i = 1,2. Since E splits a,  4 divides [e~:  K~,] and so Gal(Es,/I~[,~,) = (cry) 

for some ai E H of order 4. But all elements of order 4 in H are conjugate in 

~. By Proposition 4, a E C(E/K) .  Since c~ is an arbitrary basic element of 

Br (E /K)2 ,  Br (E / I ( )2  = C(E /K)2  by Lemma 1. | 
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